

www.paral laxsemiconductor .com
sa les@paral laxsemiconductor.com
support@paral laxsemiconductor.com
phone: 916 ‐632 ‐4664 • fax:916 ‐624 ‐8003

FAT16/FAT32 Full File System Driver Documentation v1.0 1 of 20

Application Note AN006

FAT16/FAT32 Full File System Driver

Secure Digital (SD) cards have become the choice medium for mass storage in embedded
systems. The goal of this application note is to provide the reader with knowledge on how
to use SD cards, important features of the FAT file system, and how to use the FAT16/32
Full File System Driver software library for the Propeller chip (P8X32A).

Introduction
The Full File System Driver gives the Propeller chip the ability to read or write to files on an
SD card and perform directory operations. Using the driver successfully requires a good
understanding of SD cards and the FAT16/32 file system.

The SD Card
Three SD card formats are available today: standard, high capacity, and extended capacity.

Standard SD cards come in three physical packages: full sized, mini, and micro. Similarly,
high capacity SD cards come in the same three formats. Extended capacity SD cards come
only in full-sized and micro formats.

Table 1: SD Card Formats http://www.sdcard.org

Format Capacity Packages Available

SD – Standard Up to 2 GB SD, Mini SD, Micro SD

SDHC – High Capacity 4 GB to 32 GB SD, Mini SD, Micro SD

SDXC – Extended Capacity Over 32 GB up to 2 TB SD, Micro SD

The SD Association[1] makes available complete information on SD card specifications for
both consumers and developers.

http://www.sdcard.org/

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 2 of 20

SD Card Pin Layouts
Table 2 shows the pin layouts for full sized SD cards and micro SD cards. Full sized SD card
slots supply the card detect (CD) and write protect (WP) pins. However, Micro SD card slots
only have the card detect pin.

Table 2: Pin Layouts for SD and Micro SD Packages

SD Card Micro SD Card

Pin 1 – Chip Select (CS) Pin 1 – Unused

Pin 2 – Data In (DI) Pin 2 – Chip Select (CS)

Pin 3 – Ground Pin 3 – Data In (DI)

Pin 4 – 3.3V Pin 4 – 3.3V

Pin 5 – Clock (CLK) Pin 5 – Clock (CLK)

Pin 6 – Ground Pin 6 – Ground

Pin 7 – Data Out (DO) Pin 7 – Data Out (DO)

Pin 8 – Unused

 Pin 9 – Unused
Pin 8 – Unused

Simple Electrical Interface Schematics
Use the electrical schematics in Figure 1 and Figure 2 for interfacing with SD cards when not
using card detect and/or write protect pins. Pull-up resistors on the DI and CLK lines are
optional, but prevent bus floating. Pull-up resistors on the DO and unused lines are also
optional; however, leaving them out will increase power consumption. The pull-up resistor
on the CS line is also optional, but recommended for MMC compatibility. Additionally, the
lines shown below should be as short as possible. Additionally, connect a power supply
decoupling capacitor (above 100 µF) and/or filter (not shown) near the SD or micro SD card
slot to prevent brownouts from occurring.

Figure 1: SD Card Slot Simple Interface

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 3 of 20

Figure 2: Micro SD Card Slot Simple Interface

Advanced Electrical Interface Schematics
Use the electrical schematics in Figure 3 and Figure 4 for interfacing with SD cards using
card detect and/or write protect pins. Pull-up resistors on the DO and unused lines are
optional; however, leaving them out will increase power consumption. The pull-up resistor
on the CS line is optional too, but recommended for MMC compatibility. The pull-up resistor
on the CLK line for the micro SD card is also optional, but prevents bus floating.
Additionally, the lines shown below should be as short as possible.

Figure 3: SD Card Slot Advanced Interface

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 4 of 20

Figure 4: Micro SD Card Slot Advanced Interface

Additionally, connect a power supply decoupling capacitor (above 100 µF) and/or filter (not
shown above) near the SD or micro SD card slot to prevent brownouts from occurring.

Parallax Electrical Interface Schematics
Use the electrical schematics in Table 3 for interfacing with SD cards using Parallax Inc.’s
full-sized SD Card Adapter Kit[2] or micro-SD Card Adapter[3]. Again, the lines shown below
should be as short as possible.

Table 3: Parallax Interface

SD Card Micro SD Card

P0 connects to the driver’s DO pin, P1 connects to the driver’s CLK pin. P2 connects to the
driver’s DI pin, P3 connects to the driver’s CS pin, P4 connects to the driver’s CD pin, and
P5 (if present) connects to the driver’s WP pin. Other pins on the Propeller chip than the
ones listed above will work with the Full File System Driver.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 5 of 20

Disk Partitioning and Formatting
SD cards with a master boot record (MBR) support up to four FAT16 or FAT32 partitions
while SD cards without a MBR support only one FAT16 or FAT32 partition.

Sectors and Clusters
Bytes on SD cards are accessible in 0.5 KB chunks called sectors. Sectors are accessible in
0.5 KB, 1 KB, 2 KB, 4 KB, 8 KB, 16 KB, 32 KB, and 64 KB chunks called clusters.

Figure 5: Clusters and Sectors[4]

The default allocation unit for the FAT16/32 file system is the cluster, and files or folders
span one or more clusters. This means a one-byte file takes up an entire cluster. Thus,
smaller cluster sizes save more space and larger cluster sizes waste more space.

Clusters are accessed one sector at a time, linearly, by the Full File System Driver. The
driver can access a list of linear sectors more quickly than a list of non-linear sectors.
However, files and folders are not guaranteed to be made out of a linear list of clusters (a
file with a linear list of clusters has a linear list of sectors). Thus, a file system with a small
cluster size will be slower than a file system with a large cluster size.

FAT Type Differences
There are three main FAT file system formats: FAT12, FAT16, and FAT32. The Full File
System driver does not support FAT12—FAT12 exists solely for floppy disks. Use FAT16 for
small SD cards fewer than 4 GB in size. Inversely, use FAT32 for large SD cards more than
4 GB in size. This is because FAT file systems under approximately 64 K clusters are FAT16
while FAT file systems over approximately 64 K clusters are FAT32. Keep in mind that a
FAT32 partition on a small SD card will have a large number of small-sized clusters while a
FAT16 partition on a large SD card will have a small number of large-sized clusters. Neither
of the above cases is optimal for performance or space savings.

Warning: The default factory settings for the file system type and cluster size are the
optimal settings for any SD card. Changing them may reduce performance.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 6 of 20

The FAT16/32 Full File System Driver
Start the secure digital card block driver first before using the Full File System Driver. The
following piece of code illustrates how to set up the secure digital card block driver.

CON

 _clkmode = xtal1 + pll16x ' The clkfreq is 80MHz.
 _xinfreq = 5_000_000 ' Demo board compatible.

 _dopin = 0
 _clkpin = 1
 _dipin = 2
 _cspin = 3
 _cdpin = 4 ' -1 if unused.
 _wppin = 5 ' -1 if unused.

 _rtcclkpin = -1 ' -1 if unused.
 _rtcdatpin = -1 ' -1 if unused.
 _rtcbuslck = -1 ' -1 if unused.

OBJ fat: "SD-MMC_FATEngine.spin"

PUB main

 fat.fatEngineStart(_dopin, _clkpin, _dipin, _cspin, _wppin, _cdpin, {
 } _rtcdatpin, _rtcclkpin, _rtcbuslck)

The fatEngineStart method initializes the SD card block driver that handles
communication with the SD card. The method returns true if it succeeds and false if it fails.
The above code does not check if fatEngineStart failed because the method will always
succeed in the above situation. However, when dynamically starting and stopping the SD
card block driver, check what fatEngineStart returns. There is also a fatEngineStop
method, which shuts down the SD card block driver.

Once the block driver is running, call the partitionCardNotDetected method to check if no
SD card is detected. In addition, to check if the SD card is write protected, call
partitionWriteProtected. Card detection is disabled if the CD pin is set to -1. Write
protection is also disabled if the WP pin is set to -1. When card detection is disabled, the
driver assumes an SD card is always detected. When write protection is disabled, the driver
assumes the detected SD card is not write protected.

Note: MMC cards do not feature the mechanical write protection slider found on SD cards.

Real Time Clock Support
The Full File System Driver also supports real time clock (RTC) modules. The above code
shows how the driver interfaces with an I2C RTC module. The driver supports several
different RTC modules. If a RTC module is to be used with the Full File System Driver,
select the desired version of the Full File System driver that supports your RTC module. The
driver can also be modified to support any other real time clock module.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 7 of 20

Mounting and Un-mounting
After initializing the SD card block driver, a FAT16 or a FAT32 partition on the SD card can
be mounted for use. A FAT16 or FAT32 partition must be mounted before performing file
system operations. The code below shows how to do so.

CON _errorpin = 23 ' Error LED.

PUB main | errorNumber, errorString

 fat.fatEngineStart(_dopin, _clkpin, _dipin, _cspin, _wppin, _cdpin, {
 } _rtcdatpin, _rtcclkpin, _rtcbuslck)

 errorString := \code ' Returns the address of the error string or null.
 errorNumber := fat.partitionError ' Returns the error number or zero.

 if(errorNumber) ' Light a LED if an error occurs.
 outa := constant(|<_errorpin)
 dira := constant(|<_errorpin)

 repeat ' Wait until reset or power down.

PRI code ' Put the file system calls in a separate method to trap aborts.

 fat.mountPartition(0) ' Mount the default partition 0. Can be 0 - 3.

Most of the methods inside of the Full File System Driver abort when an error occurs.
Because of this, set up an error handler to trap abort errors. Whenever a file system
function aborts, it returns a pointer to an error string describing the error. Additionally, it is
possible to get the error number associated with the error string by calling the
partitionError method. Listed in the code below are the error numbers.

Note: partitionError returns the error number only once and then clears the error. If
another error occurs before calling partitionError, the old error will be overwritten.

CON ' Use obj#errorName to get the error number constant. E.g. fat#disk_io_error.

 #1, Disk_IO_Error, Clock_IO_Error, {
 } File_System_Corrupted, File_System_Unsupported, {
 } Card_Not_Detected, Card_Write_Protected, {
 } Disk_May_Be_Full, Directory_Full, {
 } Expected_An_Entry, Expected_A_Directory, {
 } Entry_Not_Accessible, Entry_Not_Modifiable, {
 } Entry_Not_Found, Entry_Already_Exist, {
 } Directory_Link_Missing, Directory_Not_Empty, {
 } Not_A_Directory, Not_A_File

Most of the errors above are recoverable. However, Disk_IO_Error, Clock_IO_Error,
File_System_Corrupted, File_System_Unsupported, and Card_Not_Detected are
unrecoverable errors. Unrecoverable errors un-mount the file system; a recoverable error
does not. If an unrecoverable error occurs, call the mountPartition method again to
remount the file system. Error handling can become arbitrarily complicated; the above
error handler is only a simple example.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 8 of 20

Call the partitionMounted method (not shown in code above) to get the state of the Full
File System Driver at any time. When the partition is not mounted, all of the methods in
the driver will do nothing when called and return null—they will not abort. After you mount
the partition, however, methods may abort. In addition, call the methods shown in Table 4
to obtain more information about the file system once mounted.

Table 4: File System Information Methods

Method Name Action

partitionDiskSignature Returns the disk signature number

partitionVolumeIdentification Returns the volume identification number

partitionVolumeLabel Returns a pointer to the volume label string

partitionFileSystemType Returns a pointer to the file system type string

partitionBytesPerSector
Returns the count of bytes per sector for the
current partition

partitionSectorsPerCluster
Returns the count of sectors per cluster for the
current partition

partitionDataSectors
Returns the count of sectors for the current
partition

partitionCountOfClusters
Returns the count of clusters for the current
partition

partitionUsedSectorCount
Returns the current used sector count on this
partition

partitionFreeSectorCount
Returns the current free sector count on this
partition

Note: partitionUsedSectorCount and partitionFreeSectorCount scan the entire file
allocation table (FAT) when called and may take a long time to return.

To un-mount the partition, call the unmountPartition method. Always un-mount any
mounted partition. Once called on a writable SD card partition, mountPartition flags the
partition it mounts as dirty; when unmountPartition is called, it flags the writable SD card
partition as clean. The mountPartition method returns true if it mounts a dirty partition,
and false if it mounts a clean partition. A dirty partition may be corrupted. Check dirty
partitions for consistency before using them.

Note: If you try to use a dirty partition with Microsoft Windows it will run Check Disk on the
dirty partition to check for errors and to try to fix them (results may vary).

Formatting
To format a partition on the SD card, call the formatPartition method. This method
deletes all files and folders on a partition. Do not call the formatPartition method if you
do not want to delete everything on a partition.

Note: The formatPartition method only zeros the partition FAT and root directory. It does
not partition or format an unformatted SD card nor does it zero every sector. Some disk
recovery utilities may be able to recover files and folders on a formatted partition.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 9 of 20

Files and Folders
Files and folders are called directory entries in a FAT16/32 file system. Directory entries
have an identifying “8.3” file name, a set of attributes, access time stamps, and a number
of bytes of information stored on the partition. The Full File System Driver accesses
directory entries on the file system partition through file system paths and target names.

An 8.3 file name (short file name) is a file or folder name with 8 characters for the name
plus a 3-character file extension. Short file names can use the following characters:

 Uppercase A – Z. Lowercase a – z convert to uppercase A – Z

 Numbers 0 – 9

 Space

 Symbols: ! # $ % & ‘ () - @ ^ _ ` { } ~

 Values 128 – 255

This excludes the following characters, however:

 Symbols: “ * + , . / : ; < = > ? [\] |

 Control Characters 1 – 31

 Value 127

Table 5 shows a few examples of short file names. The Full File System Driver enforces the
above short file name rules and translates offending short file names passed to it.

Table 5: Short File Name Examples

Passed Short File Name Translated Short File Name

HelloWorld.html HELLOWOR.HTM

Hello.World.html HELLO.WOR

Hello+World.html HELLO_WOR.HTM

Hello World . html HELLO WO.HTM

.txt _.txt

 _

.. ..

. .

Note: The bottom two short file names are special short file names handled by the driver.

The Full File System Driver automatically replaces lower case characters with upper case
characters, replaces excluded characters with the underscore character, skips leading space
in front of the file name and file name extension, and translates empty short file names to
the underscore character.

Translation is handled by reading the first 8 leading valid characters after leading spaces for
the file name and the first 3 leading valid characters after leading space characters after a
period is encountered for the file name extension.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 10 of 20

By default, Microsoft Windows names files and folders using “long file names” (LFNs) which
the Full File System Driver does not support. LFNs can have a file name and extension up
to 255 characters long, and support upper case and lower case characters. Additionally,
LFNs support UTF-16 characters while short file names only support ASCII characters.
Excluded characters in LFNs are the \ / : * ? “ < > | characters.

Whenever Microsoft Windows creates a file or folder using an LFN it also creates a directory
entry with a short file name. However, the short file name created for use with the LFN is
only remotely similar to the LFN. E.g. “Parallax.txt” translates to “PARALL~1.TXT” while
“Parallax Propeller.txt” translates to “PARALL~2.TXT” for another file or folder in the same
directory. Nevertheless, when Microsoft Windows creates an LFN following the short file
name rules, the short file name matches the LFN exactly. E.g., “PROPEL.TXT” translates to
“PROPEL.TXT”. Avoid LFN to short file name confusion by naming files and folders following
the short file name rules.

In addition to having a short file name, files and folders on the file system partition can
have the following attributes:

 Read Only – The file or folder cannot be deleted or moved. If the directory entry is
a file, it also cannot be opened for writing.

 Hidden – The Full File System Driver does nothing with this attribute. However,
Microsoft Windows will not list hidden files or folders by default.

 System – The Full File System Driver also does nothing with this attribute.
However, Microsoft Windows will not list system files or folders by default and will
not allow modification to system files or folders without administrator rights.

 Directory – Directory entries with this attribute are folders, directory entries without
this attribute are files.

 Archive – Files with this attribute have been modified (written or moved). Folders
cannot have this attribute. The archive attribute is set by the Full File System Driver
and cleared by backup utilities performing file system maintenance.

New files and folders have their creation time stored in their directory entry. Files opened
for reading or writing also have their last access time stored in their directory entry.
Additionally, files opened for writing have their modification time stored in their directory
entry. Folders, however, do not have their last access time or last modification time
recorded and stored in their directory entry—only their creation time.

Files and folders are stored the same way in the FAT16/32 file system. Folders are simply
containers for more files and folders. Both files and folders have cluster chains and use up
space on the partition. However, only the files have their size recorded in their directory
entry—folders do not have their size recorded; it is always zero.

Folders have two special directory entries inside of them called the “.” (dot) and “..”
(dotdot) entries. The dot entry points to the current folder the file system is in, and the
dotdot entry points to the previous folder the file system was in (up one level). The dot and
dotdot entries support navigation through the file system and pathing. Trying to modify the
dot and dotdot entries will cause the Full File System Driver to error.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 11 of 20

File System Paths and Target Names
The Full File System Driver accesses files and folders on the FAT16/32 file system partition
using file system paths and target names. A file system path is simply a string of directory
(folder) short names separated by the “/” or “\” characters. A target name is the short
name of the file or folder to perform a file system operation on. There are two types of file
system path strings: relative path strings and absolute path strings. A relative path string
starts from the current directory the file system is in. An absolute path string starts from
the root directory of the file system.

A relative path string: “folderName/folderName/…/folderName/targetName”
It may also just be “targetName”
An absolute path string: “/folderName/folderName/…/folderName/targetName”
It may also just be “/targetName”

Note: “/” and “\” characters are interchangeable.

After the Full File System Driver mounts a partition, the current directory is the root
directory. The root directory is the default directory on a FAT16/32 file system partition. To
change directories after mounting a partition, call the changeDirectory method to change
the current directory. The changeDirectory method takes a file system path string and
changes the current directory to be the target folder’s directory. When passed just the “/”
or “\” character (in a string) the changeDirectory method will change the current directory
back to being the root directory.

File System Manipulation Methods
The Full File System Driver supports the following file system manipulation methods:

To create new files, call the newFile method. The newFile method takes the file system
path string of a new file and creates it. New files take up zero clusters on the partition until
written to.

To create new folders, call the newDirectory method. The newDirectory method takes the
file system path string of a new folder and creates it. New folders take up one cluster
initially on the partition.

To delete files or folders, call the deleteEntry method. The deleteEntry method takes the
file system path string of a file or folder to delete and deletes it. Some disk recovery
utilities may be able to recover files and folders deleted by the deleteEntry method.

To move files or folders, call the moveEntry method. The moveEntry method takes the file
system path string of a file or folder to move and moves it to another file system path given
by another file system path string. Use the moveEntry method to rename files or folders.

To change file or folder attributes, call the changeAttributes method. This method takes
the file system path string of a file or folder to change the attributes of and a string
containing the new attributes for that file or folder. Use the changeAttributes method to
make files or folders read-only and to clear or set the archive flag for files.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 12 of 20

Listing Files and Folders
To collect information about files and folders on the FAT16/32 file system partition, use the
listEntry method. The listEntry method takes the file system path string of a file or
folder to collect information about and loads the listing methods with information about that
file or folder. Described in Table 6 are the listing methods.

Table 6: Listing Methods

Method Name Action

listName Returns the listed entry’s name string

listSize Returns the listed entry’s size in bytes

listCreationDay Returns the listed entry’s creation day

listCreationMonth Returns the listed entry’s creation month

listCreationYear Returns the listed entry’s creation year

listCreationSeconds Returns the listed entry’s creation seconds

listCreationMinutes Returns the listed entry’s creation minutes

listCreationHours Returns the listed entry’s creation hours

listAccessDay Returns the listed entry’s last access day

listAccessMonth Returns the listed entry’s last access month

listAccessYear Returns the listed entry’s last access year

listModificationDay Returns the listed entry’s modification day

listModificationMonth Returns the listed entry’s modification month

listModificationYear Returns the listed entry’s modification year

listModificationSeconds Returns the listed entry’s modification seconds

listModificationMinutes Returns the listed entry’s modification minutes

listModificationHours Returns the listed entry’s modification hours

listIsReadOnly Returns if the listed entry is read-only

listIsHidden Returns if the listed entry is hidden

listIsSystem Returns if the listed entry is system

listIsDirectory Returns if the listed entry is directory

listIsArchive Returns if the listed entry is archive

The listing methods simply access information about the currently listed file or folder by the
listEntry method. Call listEntry before calling any listing methods to load information
about a target file or folder.

In addition to the listEntry method is the listEntries method. The listEntries
method, when called in a loop, loads information about all files and folders in the current
directory one at a time. Use the listEntries method to collect information about all files
and folders in the current directory. The code below shows how to use listEntry,
listEntries, and the listing methods.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 13 of 20

PRI howToUseListEntry(fileSystemPathString)

 fat.listEntry(fileSystemPathString) ' Find an entry.

 ' Save the information returned by the below methods.
 ' Or print the information returned by the below methods.

 fat.listName
 fat.listSize
 fat.listCreationDay
 fat.listCreationMonth
 fat.listCreationYear
 fat.listCreationSeconds
 fat.listCreationMinutes
 fat.listCreationHours
 fat.listAccessDay
 fat.listAccessMonth
 fat.listAccessYear
 fat.listModificationDay
 fat.listModificationMonth
 fat.listModificationYear
 fat.listModificationSeconds
 fat.listModificationMinutes
 fat.listModificationHours
 fat.listIsReadOnly
 fat.listIsHidden
 fat.listIsSystem
 fat.listIsDirectory
 fat.listIsArchive

PRI howToUseListEntries | entryName

 fat.listEntries("W") ' Wrap around.
 repeat while(entryName := fat.listEntries("N"))
 ' "entryName" points to the string name of the next entry.

 ' Save the information returned by the below methods.
 ' Or print the information returned by the belowmethods.

 fat.listName
 fat.listSize
 fat.listCreationDay
 fat.listCreationMonth
 fat.listCreationYear
 fat.listCreationSeconds
 fat.listCreationMinutes
 fat.listCreationHours
 fat.listAccessDay
 fat.listAccessMonth
 fat.listAccessYear
 fat.listModificationDay
 fat.listModificationMonth
 fat.listModificationYear
 fat.listModificationSeconds
 fat.listModificationMinutes
 fat.listModificationHours
 fat.listIsReadOnly
 fat.listIsHidden
 fat.listIsSystem
 fat.listIsDirectory
 fat.listIsArchive

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 14 of 20

The listEntries method does not reset itself and wrap around to the top of the current
directory when other file system methods are called (besides listEntry). This allows the
listEntries method to collect the short names of files and folders in the current directory
linearly while other file system methods are called in between calls to listEntries. E.g.,
listEntries can be used to open every file in the current directory.

PRI openAllFiles | entryName ' In the current directory.

 fat.listEntries("W") ' Wrap around.
 repeat while(entryName := fat.listEntries("N"))

 ' Make sure the entry is not a directory.
 ifnot(fat.listIsDirectory)
 fat.openFile(entryName, "R")
 ' Preform operations.
 fat.closeFile

PRI deleteAllFiles | entryName ' In the current directory.

 fat.listEntries("W") ' Wrap around.
 repeat while(entryName := fat.listEntries("N"))

 ' Make sure the entry is not a directory.
 ifnot(fat.listIsDirectory)
 fat.deleteEntry(entryName)
 ' Perform other operations.

Soft Load RAM from File
The Full File System Driver supports the ability to reboot the Propeller chip to run code from
any valid Spin EEPROM or BIN file. To do this, call the bootPartition method, and pass to
it the file system path string of the file to reboot the Propeller chip from. If the file is a valid
Spin EEPROM or BIN file, the Propeller chip will immediately reload and begin executing the
new code. Otherwise, the Propeller chip will shut down and wait for reset.

File Access
Perform file operations only after the file system is mounted. File operations consist of
reading or writing bytes, words, and/or longs from or to a file. FAT16 and FAT32 support
files up to about 4 GB in size; however, the Full File System Driver will only allow access to
the first 2 GB of a file and will never report file sizes larger than 2 GB. The driver will not
write past the 2-GB boundary. This limitation is due to the nature of the Spin language
supporting only signed arithmetic operations.

A file must be open first for the file system to read or write data to it. Files can be opened
for reading, writing, or appending. When a file is opened for reading, it cannot be written
to. A file opened for writing, however, can be read and written. Opening a file for
appending is similar to opening a file for writing except that data is written after the end of
the file instead of to the beginning of the file.

Note: Files opened for writing are not truncated in length because they are opened for
reading and writing at the same time. Delete and remake a file to truncate it in length.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 15 of 20

The code below shows how to create a new file and then open it for writing. Remember
that newFile returns a pointer to a string containing the name of the file it created.

PRI code ' Put the file system calls in a separate method to trap aborts.

 fat.mountPartition(0) ' Mount the default partition 0. Can be 0 - 3.

 fat.openFile(fat.newFile(string("text.txt")), "W") ' Create and open text.txt.

The code above creates a new file called “text.txt” and opens it for writing. Follow the code
below to open a previously created file called “text.txt” for reading.

PRI code ' Put the file system calls in a separate method to trap aborts.

 fat.mountPartition(0) ' Mount the default partition 0. Can be 0 - 3.

 fat.openFile(string("text.txt"), "R") ' Open text.txt.

In addition, the code below shows how to open a file called “text.txt” for appending.

PRI code ' Put the file system calls in a separate method to trap aborts.

 fat.mountPartition(0) ' Mount the default partition 0. Can be 0 - 3.

 fat.openFile(string("text.txt"), "A") ' Open text.txt for appending.

Table 7 describes the file access methods in the Full File System Driver.

Table 7: File Access Methods

Method name Action

readByte Returns a byte from the file and advances the file position by one.

readShort Returns a short from the file and advances the file position by two

readLong Returns a long from the file and advances the file position by four

readString Returns a string from the file and advances the file position by the string size

writeByte Puts a byte in the file and advances the file position by one

writeShort Puts a short in the file and advances the file position by two

writeLong Puts a long in the file and advances the file position by four

writeString Puts a string in the file and advances the file position by the string size

readData
Reads an arbitrary amount of data from a file and advances the file position by that
amount of data

writeData
Writes an arbitrary amount of data from a file and advances the file position by that
amount of data

fileSize Returns the file size in bytes of the opened file

fileTell Returns the file position in bytes of the opened file

Access files opened for reading by using the readByte, readShort, readLong, readString,
and readData methods. Any calls to the write methods while the file is open for reading will
do nothing. Access a file open for writing, however, by calling the writeByte, writeShort,
writeLong, writeString, or writeData methods in addition to calling the reading methods.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 16 of 20

Note that the readString method intelligently reads bytes in from the file until it
encounters 0 (ACSII Null), 10 (ASCII Line Feed), 13 (ASCII Carriage Return), runs out of
space to store the string it is reading in from the file, or encounters the end of the file.

Also note that the writeString method quickly writes an arbitrary-sized string to the file.

To move back and forth inside of a file use the fileSeek method. The fileSeek method
allows changing of the file position inside of the file when reading or writing.

When the fileTell and fileSize methods return the same value, the end of file has been
reached. After the end of file has been reached, reads have no effect.

When writing data to a file opened for writing or appending, the Full File System Driver
buffers the data temporarily before writing it to disk. The driver does this to improve read
and write performance. Whenever enough data is written to fill up the buffer, or the file is
closed, the driver flushes the buffer to the disk. The driver has a flushData method that
gives the ability to flush written data to the disk at will. The flushData method comes in
handy when writing to a file over a long period of time (think days) and it is necessary to
make sure the driver writes all the data to the disk. The flushData method is not needed
for normal operation, as the driver will handle flushing regularly.

File reading and writing performance improves as larger chunk sizes are used. The
readByte, writeByte, readShort, writeShort, readLong, and writeLong methods are all
bottlenecked by the Full File System Driver. For quick file access, use the readData and
writeData methods with external data buffers. Refer to Table 8 for the average speeds of
the reading and writing methods.

Table 8: File Access Methods Throughput

Method Access throughput average

readByte 3 KB

readShort 6 KB

readLong 13 KB

readString 3 KB

writeByte 3 KB

writeShort 6 KB

writeLong 12 KB

writeString 110 KB

readData 241 KB

writeData 110 KB

Some outliers may exist from the table above. Below are a series of file access examples.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 17 of 20

PRI code | counter, buffer[128] ' Put calls in a separate method to trap aborts.

 fat.mountPartition(0) ' Mount the default partition 0. Can be 0 - 3.

 fat.openFile(fat.newFile(string("text.txt")), "W") ' Create and open text.txt.

 ' // Examples below. Note: If "text.txt" already exist abort...

 fat.writeString(string("Hello World!")) ' Write "Hello World!" to the file.
 fat.fileSeek(0) ' Go to the beginning of the file - was at position 12.
 ' Position 0 in the file is "H" ... position 11 in the file is "!".

 ' Note: After using fileSeek it is not possible to go back to position 12.
 ' This is because it doesn't exist yet. Nothing has been written there.
 ' Position 11 is the last position which has "!" in it.
 ' Position 11 must be rewritten to get back to position 12.
 ' Moral of the story? Try to only use file seek in a fixed length file.

 fat.readString(@buffer, 512) ' Read the string just written back from the file.
 ifnot(strcomp(@buffer, string("Hello World!"))) ' Should read back what was written.
 abort string("Um...") ' This should not happen.

 repeat counter from 0 to 9 ' Write "0123456789"
 fat.writeByte("0" + counter) ' Same as fat.writeString(string("0123456789")).

 fat.fileSeek(fat.fileTell - 4) ' Go back 4 steps. Should be at "6".
 ' "9""8""7""6"
 if(fat.readLong <> $39_38_37_36) ' Remember! Little endian!
 abort string("Eh...") ' No good.

 fat.fileSeek(0) ' Back to the beginning again.

 ' Note: Seeking back and forth inside of a sector (512 Bytes) is quick!
 ' The farther fileSeek has to travel, the longer it takes!

 repeat until(fat.fileTell == fat.fileSize) ' Same as "repeat fat.fileSize"
 fat.readByte ' This is just an example of how to read every byte in a file.

 fat.writeData(@buffer, 512) ' Write 0.5KB quick. Should mostly be zeros.

 fat.openFile(string("text.txt"), "A") ' Close and open the file again.
 ' Opening another file closes the previous one.

 fat.writeLong(1_234_567_890) ' Write some data at the end of the file.

 fat.flushData ' Make sure the data is written to the file.

 ' Okay, clean up time!

 fat.closefile ' Make sure that data is written to the file.
 ' fat.flushData is not needed when opening and closing a file quickly.
 ' fat.flushData is for cases in which the file is open for a long time (think days).
 ' Or, alternatively for cases in which data is written very slowly.

 ' The only way to shrink a file is to delete it and start over.
 fat.deleteEntry(string("text.txt")) ' So, delete it.
 fat.openFile(fat.newFile(string("text.txt")), "W") ' And remake it.

 fat.writeString(string("All Done!")) ' Done.
 fat.unmountPartition ' This function also closes any open files.
 ' Not unmounting the partition may cause bad things to happen.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 18 of 20

Once finished reading or writing data from and to a file, close the file by calling the
closeFile method. The closeFile method writes any buffered data to disk and then
updates the file access and modification times and the archive flag. Always close a file
opened for writing or it will become corrupted. For files opened for writing for a long period
of time (think days), periodically call the flushData method to prevent possible corruption
due to power failure, brown outs, etc. Files opened for reading do not have to be closed;
they will not become corrupted if not closed, as files opened for writing will be. However,
try to always close all opened files!

Multiple File Access
Each included instance of the Full File System Driver object allows one file open at a time.
For more than one file open at a time, simply include more than one copy of the driver
object. Each driver object shares the SD card and works independently of the other driver
objects. The driver objects only share access to the file system and the secure digital card
block driver. Call the FATEngineStart method only once for all the included copies of the
driver object. Because each of the driver objects is independent from the other driver
objects, each one of them needs to call the mountPartition method to mount a partition on
the SD card, etc. Below is an example of using two instances of the driver object to have
more than one file open at a time.

OBJ

 fat0: "SD-MMC_FATEngine.spin"
 fat1: "SD-MMC_FATEngine.spin"

PUB main | errorNumber0, errorNumber1, errorString

 ' "fatEngineStart" is only called once. Either driver object can call it.
 fat0.fatEngineStart(_dopin, _clkpin, _dipin, _cspin, _wppin, _cdpin, {
 } _rtcdatpin, _rtcclkpin, _rtcbuslck)

 errorString := \code ' Returns the address of the error string or null.
 errorNumber0 := fat0.partitionError ' Returns the error number or zero.
 errorNumber1 := fat1.partitionError ' Returns the error number or zero.

 if(errorNumber0 or errorNumber1) ' Light a LED if an error occurs.
 outa := constant(|<_errorpin)
 dira := constant(|<_errorpin)

 repeat ' Wait until reset or power down.

PRI code ' Put the file system calls in a separate method to trap aborts.

 fat0.mountPartition(0) ' Mount the default partition 0. Can be 0 - 3.
 fat1.mountPartition(0) ' Mount the default partition 0. Can be 0 - 3.

 fat0.openFile(fat0.newFile(string("text.txt")), "W") ' Create and open text.txt.
 fat1.openFile(fat1.newFile(string("test.txt")), "W") ' Create and open test.txt.

 ' ... Each object interacts with the partition file system separately.

 fat0.unmountPartition ' Closes the open file and unmounts the partition.
 fat1.unmountPartition ' Closes the open file and unmounts the partition.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 19 of 20

Multiple Cog File System Access and Locking
The Full File System Driver supports multiple cogs running the Spin interpreter accessing it
at the same time. The driver accomplishes this by letting only one cog running the Spin
interpreter access it at a time by using locks. This feature allows multiple cogs to access a
single file using one instance of the driver or multiple cogs accessing multiple files through
multiple instances of the driver. However, because the driver supports locks, deadlocking
can occur. Deadlocking occurs when one cog locks the driver and never unlocks it, so
other cogs cannot access it. Deadlocking will occur when a cog is “cogstop’ed” while it is
still using the driver. Always wait until a cog has finished using the driver before
“cogstop’ing” it.

Note that some of the file access methods can take a long time to complete and unlock the
file system. This may cause a multi-cog system to become unresponsive and lock up.

Simultaneous File and Folder Access
Each instance of the Full File System Driver supports only one file open at a time.
Additionally, each instance of the driver will close any file it has open after calling a non-file
access method. More specifically, after calling changeDirectory, deleteEntry,
changeAttributes, moveEntry, newFile, newDirectory, listEntries, listEntry,
bootPartition, formatPartition, mountPartition, or unmountPartition in one instance
of the driver, that instance of the driver will close any file it has open. Each instance of the
driver will not allow an open file and use of the above methods at the same time—the
drivers do this to prevent file access conflicts. However, each instance of the driver does
not share with the other instances of the driver which file it has open. Nevertheless, all
instances of the driver still share the underlying file system partitions. Because of this,
there are some illegal operations that will cause file and folder corruption.

 Deleting a file with one instance of the Full File System Driver while it is open in
another instance of the driver.

 Moving a file with one instance of the Full File System Driver while it is open in
another instance of the driver.

 Formatting a partition with once instance of the Full File System Driver while another
instance of the driver is still using that partition.

Also, more complicated file access operations can be preformed because of this “feature.”

 Open a file for reading multiple times with multiple instances. This may be useful in
certain situations. This is not dangerous.

 Open a file for writing multiple times with multiple instances. This may be useful in
certain situations. This is dangerous, however, and will likely result in corruption
unless file system buffering is very well understood.

Parallax Semiconductor AN006

FAT16/FAT32 Full File System Driver Documentation v1.0 20 of 20

Stack Space
Within the driver’s source code, the “Stack Longs” value under each method header is an
estimate of how large a Spin interpreter’s stack size can increase when it calls the method.

The “Stack Longs” value only accounts for the stack size increase due to bookkeeping
information, passed parameters, and local variables. It does not account for stack size
increase due to expression evaluation or calls to other Spin objects. The estimated stack
size for a Spin interpreter should be set to be at least 20% larger than the expected
estimate stack usage from the information given above to account for expression evaluation
and additional startup Spin interpreter booking information. It may be the case that the
stack size never grows as large in practice as the maximum stack size estimate value—but
this is okay.

Resources
Each archive zip file includes the Full File System Driver, the real time clock driver, the real
time clock datasheet, and a simple SD card tester/profiler example/demo code file.

Full File System Driver with DS1302 RTC.zip
Full File System Driver with DS1307 RTC.zip
Full File System Driver with S35390A RTC.zip
Full File System Driver without RTC.zip

References
1. Information from SD Association; http://www.sdcard.org
2. SD Card Adapter Kit, Parallax Inc., #32313; www.parallax.com
3. micro-SD Card Adapter, Parallax Inc, #32212; www.parallax.com
4. Image courtesy of André LaMothe; www.xgamestation.com

Revision History
Version 1.0: original document.

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or
use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages
even if Parallax, Inc., dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this
document in whole or in part is prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.

Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved.
Propeller and Parallax Semiconductor are trademarks of Parallax, Inc. All other trademarks herein are the property of their
respective owners.

	FAT16/FAT32 Full File System Driver
	Introduction
	The SD Card
	Disk Partitioning and Formatting
	The FAT16/32 Full File System Driver
	Resources
	References
	Revision History

